A Brief Introduction to Deep Reinforcement Learning

Wentao Bao

April 14, 2022

Outline

O Foundations of DRL
O DRL Algorithm: DQN and SAC
O DRL Application: Traffic Accident Anticipation

Foundations of DRL

O What Can DRL Do?

ALPHAGO BN
g . R | LEE SEDOL
08d BLJ sl O 516

AlphaGo for Go game TStarBots for StarCraft2
(DeepMind, 2016) (Tencent Al, 2018)

© ROS Bridge Improvements
MOREVIDEOS V< amer na Sel) i ntegrate

Solving the Rubik’s Cube CARLA for self-driving
(OpenAl, 2019) (Toyota TRI, on-going)

ReBel for Texas Hold’em
(Facebook Al, 2020)

Foundations of DRL

O What is Reinforcement Learning (RL)?

« The agent learns to take actions for a long-term goal by interacting with the environment.
« Basic Elements (System):
v Agent: the model (e.g., an Al player in video games.)

v Environment: the world to be explored (e.g., checkerboard)

v Goal: e.g., win/fail

Environment

Action -

Consequence:
Observation
Reward

Foundations of DRL

O What is Reinforcement Learning (RL)?

The agent learns to take actions for a long-term goal by interacting with the environment.

Main Elements (System):

v' State: any useful information about the agent and environment, e.g.,

o Go game: maximumly 336! checkerboard states

e Self-driving: the car’s location/velocity/acceleration, etc., and the traffic scene.

v" Action: how the agent will do in each step, e.g.,

o Go game: take a location in a checkerboard

o Self-driving: brake/accelerate/make a turn for a self-driving car.

v Reward: the instant feedback (scalar value) after taking the action , e.g.,

o Go game: long-term rewards [0, O, ..., 0, 1] (win the game).

o Self-driving: arrive at the destination.

DRL Output

So Ao T Sy

Agent

Actions

Rewards

Environment

T t

State

Foundations of DRL

O What is Reinforcement Learning (RL)?

« The agent learns to take actions for a long-term goal by interacting with the environment.

« Core Elements (Algorithm):

v

Policy: a function m: RP? — R9 that tells how to take an action under a certain state,

e Formula: a = n(s; 0)
e Instantiated by Deep Neural Networks in DRL.

Value: a function V: R? — R that evaluates the quality of an action (or action-state pair).,

o State Value Function: v =V (s; @), or
agent

\ 4

o State-Action Value Function: g = Q(s, a; p) policy

A

e Instantiated by Deep Neural Networks in DRL.

value function

Value function determines how a policy function is learned.

A
reward .
state action

T

environment

Foundations of DRL

O Atari Pong: a video game example
* Rule: hit the ball by moving the pad up or down.

. Basic Elements:

v' Agent: the Al player that controls the pad on the right.

v Environment: the raw pixels at each time step.

v' Goal: get higher final score than the opponent.
. Main Elements:

v" Action: move UP / DOWN.

v’ State: raw pixels, CNN features, location and speed of the pad, etc

v Reward: scalar value, e.g., +1 (win), or -1 (lose)

Foundations of DRL

0 Core Elements

 Policy Function

o Stochastic Policy: m(a|s) = P(A; = a|S; = s).

o Deterministic Policy: u(a|s) = argmaxm(a|s)
a

Action:
Move LEFT or RIGHT

Foundations of DRL

0 Core Elements

. Value Function

o Can be decomposed into the immediate reward plus discounted value of successive future states

o Bellman Equation of State Value:

s _ s _
v (s) = Ex[Rer1 + v (sty1)lse =]
o Bellman Equation of State-Action value (Q-function):

q"(s,a) = Ex[Res1 + 79" (St41, Aty1) |5t = 5, Ar = a]

States

Actions

Q-table

Foundations of DRL

O DRL Algorithms

 DRL Objective: Find a policy to maximize the total expected reward

max) E(sya0-palr e ac)]

 Based on what the DRL agent explicitly learns:

o Policy-based: policy (explicitly learned); no value function. Wodei-Fred

o Value-based: value (explicitly learned); policy (implicitly derived) Ve Actor Policy

o Actor-Critic Method: learn both policy and value explicitly. s po.cy-aase/
\\ Muodel-Based

« Based on if the DRL agent learns an environment model.

Model

o Model-based: the state transition is given/predicted.

o Model-free: state transition is sampled from experience _ o
Credit to: David Silver

Foundations of DRL

O Code Example

« With existing libraries, implementation is simple!
o OpenAl gym library = .

1 import gym ' J i ’
" What society thinks | do What my friends think | do What other computer
N a . scientists think | do
5 env-=-gym.make ("Taxi-v2")

- observation = env.reset() Ll

-

agent -=-load agent() s ¢ . ‘%'

= - = ‘Q 4 "
7 Tfor step-in range (10000): {

3 - {F ;

action = agent (observation) ' : .
observation, -reward, -done, -info-=-env.step(action) What mathematicians think | do What | think | do What | actually do

Online image

« A complete PyTorch example of DQN:

o https://pytorch.org/tutorials/intermediate/reinforcement q learning.html

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

Foundations of DRL

0 Recommended Resource

« Books
o Richard Sutton’s book (2d edition)

o Online version: http://incompleteideas.net/book/RLbook2020.pdf

. Online Courses

o Berkeley CS-285: htip://rail.eecs.berkeley.edu/deepricourse

o Stanford CS-234: https://web.stanford.edu/class/cs234

Open source RL libraries:
o Ray/RLIlib (TF/PT, 20k): https://github.com/ray-project/ray/tree/master/rllib

o OpenAl Baselines (TF, 12.5k): https://github.com/openai/baselines

Reinforcement
Learning

An Introduction

second edition

Richard S. Sutton and Andrew G. Barto

o PyTorch DRL (PT, 4.2k): https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch

o THU Tianshou (PT, 4.5k): https://github.com/thu-ml/tianshou

o RLpyt (PT, 2Kk): https://github.com/astooke/rlpyt

http://incompleteideas.net/book/RLbook2020.pdf
http://rail.eecs.berkeley.edu/deeprlcourse
https://web.stanford.edu/class/cs234
https://github.com/ray-project/ray/tree/master/rllib
https://github.com/openai/baselines
https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch
https://github.com/thu-ml/tianshou
https://github.com/astooke/rlpyt

DRL Algorithm: DQN

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,

Amir Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis

Hassabis

Nature 518, 529-533 (2015) | Cite this article

407k Accesses | 8728 Citations | 1559 Altmetric | Metrics

St L Al s hwan
%0 mmae loved
portarmance ia rides pr et

» The most impactful DRL algorithm till now (18.9K+ GS citations)
* The first work that combines RL and DNNSs.

https://www.nature.com/articles/nature14236

DRL Algorithm: DQN

O Deep Q-learning

Given a state, the optimal policy 7*(s) can be determined by maximizing the optimal Q-value.
7 (s) = argmax Q*(s,a)
To learn the Q*(s, a), value function approximation is introduced by using DNNs

Q(s,a,w) ~ Qx(s,a)

Using the Bellman equation, such an approximation is achieved by minimizing the temporal
difference (TD) error

Q" (s,a) =r+~vQ"(s',m(s")) Bellman Equation
6 =Q(s,a) — (r+ Y max Q(s',a)) TD Error

Eventually, Q-learning aims to minimize the average TD error by SGD optimizer

L= y L) 5(5):{%52 for [§] <1,

| B (s.0.87) € B 6] — 3 otherwise.

DRL Algorithm: DQN

O Pros and Cons of Q-learning

* Q-arget: R, +ymaz,Q(S;i1,a)
Pros: Off-policy

v' The policy to update Q-function (evaluation policy) is different to the policy used to produce action samples
(behavior policy)

Behavior policy: e-greedy (& probability to select a; 1)
: Evaluation policy: greedy (by max Q(S¢;1,a"))

Q(S,A) + Q(S,A) + « <R+ Y max Q(5,d) - Q(S,A))
« Cons:

v' The target Q is the same as the the Q to be optimized!

e.g., a cat is chasing a string tied to itself surrounding a table. -
v

. Q target Q estimation
Imagine that your labels are always changing in supervised training.

DRL Algorithm: DQN

0 How does DQN improve the Q-learning?
« Target Q Network: parameters are updated delayed.

v The “mouse” is kept fixed for a period of time, so that the “cat” could catch up.

Squared Bellman Error

Update the Target Q Network weights by running average

6+« (1—71)0+716,

§$1,44,71,S

Sp,05,15,83

« Experience Replay: stabilize the training by reducing the sample correlation

S3,03,73,5,

v' Store the transition (s;, a;, 11, S¢1+1) in a large replay buffer, from which

samples are randomly drawn to update the neural networks. S, @p) Ter Span

DRL Algorithm: DQN

O Summary of the DQN
* Q-Network Architecture: « Training Algorithm

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0

Initialize target action-value function Q with weights 6~ = 0

: For episode = 1, M do

Xk = » Q-values Initialize sequence s; = {x; } and preprocessed sequence ¢, =@ (s1)
(for each action) For t= 1T do

With probability ¢ select a random action a;,
otherwise select a, =argmax, Q(¢(s;).a; 0)

Convolution Fully connected
A A

Input Layer 1st hidden 3rd hidden (256 fully connected)

20x20

84x84

i

Atari Game Screen

.

e-greedy behavior policy

4 frames. 16 fiters 32 filters

Nodos 84xB4x 4 meoxe oxexz w4 Execute action a, in emulator and observe reward r, and image x, ; ;
' ’ Set s+ 1 =S$;,a;,%+1 and preprocess ¢, . ; =P (s¢41)
Store transition ((bt,at,rt,(]ﬁtH) in D experience
. Sample random minibatch of transitions (a1,) from D

« Loss Function P Oy replay

rj if episode terminates at step j+ 1

_ 2 Set y; = A
_ 1o 1. . e _ .
L(0) = E(s 4.r,5)~(D) [(r + Y max Q(s',a’;67) — Q(s,a;0))] 1Y 14y maxg Q<¢j+1,a’; 0) otherwise

2
Perform a gradient descent step on (yj -0 <¢ LA 9)) with respect to the
network parameters 0

Every C steps reset Q= 0 delayed Q-target update
End For
End For

DRL Algorithm: DQN

O Atari Demosl!]

#13900
003 55

Breakout Kangaroo Journey Escape

[1] Demos from: https://github.com/nik-sm/dgn

DRL Algorithm: SAC

U Exploration and Exploitation Dilemma

A simple example: Decide a restaurant to eat

v’ “Suppose there are 10 restaurants around you, and you have ever
tried 8 of them, knowing that the best of the 8 is scored 80, while the
rest 2 may be scored 20 or 100.”

v' “WIill you choose the best restaurant (80) that you tried?”

“Or will you explore a new restaurant from the two?”

Fundamental concepts that guide the design of most modern
DRL algorithms.

How to Explore the Action Space?

v" Q-learning / DQN: e-greedy method

v Maximum Entropy RL: maximize the entropy of action
distribution, e.g., SAC.

\\ |

>

o

N

?

DRL Algorithm: SAC

A Soft Actor-Critic (SAC)!]
« Training Goal: maximize the total expected reward and the entropy of actions.
T
J(0) = > E(syaip,, [r(5t,0c) + aH(mo(. |s:))]
=1

« Different to DQN that only Ieavrns the value, SAC learns both value and policy.

. Core Elements:

v' Soft Policy Network (Actor): produce action by giving a state (mp) S
—— Policy ———
v' Soft Value Network (Critic): state value (), and state-action value (Q,,) Actor
/o)
Critic ,‘f error'[
« Central Idea of Actor-Ceritic: state |—-{ /Al I action
ulnctlon

’l‘

. A policy gradient method: directly optimize policy by gradient descent.

reward
. Actor: decide which action should be taken.

Envi t
« Critic: inform the actor how “good” was the action, and how it should adjust. _[nvironmen }_

[1] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

DRL Algorithm: SAC

 Network Architectures
 Policy Network: a = n(s; 0)
« State Value Network: v = V (s;)
« Q Networks: g = Q(s,a; w)

Algorithm 1 Soft Actor-Critic
Initialize parameter vectors 1), 0. 0, ¢.
for each iteration do
for each environment step do
ay ~ mg(arlst)
St+1 7~ P(St+1 |St- at)
D <+ DU {(s¢ ar. (s, a¢),8i41) }
end for
for each gradient step do
b — AV dv ()
0; « 0; — AoV, Jo(0;) fori € {1,2}
(b — Q - /\ﬁvé']ﬂ'(o)
b1+ (1 =7
end for
end for

| Observation)
Input Embedder
Input Embedder P
l v
Middleware
Middleware L
\J 4
Dense Dense
Name: Policy Mean Name: Log Policy Std
Num outputs: num_actions Num outputs: num_actions
v ‘ v
Vv anse Policy Exponetiate
Num outputs: num_actions Network J
Network g SAC
Gaussian Distribution Head
Num outputs: num_actions
Y .2 i v
(State Value) L [sampled Actions | (Policy)

{ i
Input Embedder | | Input Embedder

(J
v

;

Middleware

l

Q Dense

Networks Num outputs: 1

[state Action value1 |

/ 1
v

Input Embedder | | Input Embedder

L J
¥

+

v

Middleware

l

Dense
Num outputs: 1

[state Action Value2 |

DRL Algorithm: SAC

L Loss Functions

 Policy Network: a = n(s; 8), updated by minimizing the KL divergence between action
distributions and energy distribution of Q values.

J=(0) = VoDxv (mo(- |s¢) || exp(Qu(st, -) — log Zu(s:)))

« State Value Network: v = V (s; y), updated by using Q value and entropy as the target

T (¥) = Eupl (Ve(se) ~ ElQu(sts 1) ~ log ma(auls)])

« Q Network: g = Q(s, a; w), updated by minimizing the TD error

JQ (w) = E(s,,a,)--»-'l)[% (Qu-(st,at) - ('r(St:at) + W'Es,.l.-»-vpﬁ(s) [VJ,(SHI)]))Q]

DRL Algorithm: SAC

 Some online resources
« Sample code of SAC: https://github.com/pranz24/pytorch-soft-actor-critic/blob/master/sac.py
« SAC is known as SOTA for Robot Learning!"!

B &hng evironment SAC+IDM SAC+IDM (PAD)

[1] Demos are from BAIR’s ICLR 2021 work: https://bair.berkeley.edu/blog/2021/02/25/ss-adaptation

https://github.com/pranz24/pytorch-soft-actor-critic/blob/master/sac.py
https://bair.berkeley.edu/blog/2021/02/25/ss-adaptation

DRL for Traffic Accident Anticipationl']

O Traffic Accident Anticipation
« Anticipate the traffic accidents before they happen as early as possible (AEAP).

« Given a dashcam video, we need to know if and when an accident will happen.

Accident Video (positive) Non-accident Video (negative)

[1] Wentao Bao, Qi Yu, and Yu Kong. "Deep Reinforced Accident Anticipation with Visual Explanation.” in ICCV, 2021.

DRL for Traffic Accident Anticipation

O Challenges
* Visual cues of future accidents are difficult to be captured

o Explicitly model the human visual attention

Where do drivers look when predicting future accidents?

Illustration for drivers’ visual attention

« Trade-off between early and accurate decisions

o Formulate the task as a Reinforcement Learning problem Actions v
Agent Environment
t =1y t =tp an accident occurs
' |
T T A 1 Rewards
State

early, not accurate too late, accurate

DRL for Traffic Accident Anticipation

O Preliminary: Human Visual Attention

Biological Vision System

o Foveal vision: recognizing object semantics.

o Peripheral vision and working memory: drives visual exploration.

Human visual attention is computationally simulated by saliency map.

With eye-tracking data, saliency map could be predicted by DNN.

4 SNSS

(¢) Bottom-up Attention (1)

(d) Top-down Attention G(F'(1,p))

Anterior chamber Cornea
(aqueous humour)
Posterior chamber

Suspensory
ligament
of lens

Fovea on Retina
(Wikipedia)

DRL for Traffic Accident Anticipation

O DRL Setup

 Basic Elements:
v' Agent: deep neural networks (DNN).

v Environment: dashcam traffic videos. I /
v Goal: predict accident AEAP, visually
explainable -}
« Main Elements: O~ 6 l = -
: 2 Agent Reward Environment %_'
v/ State: 1) attended local region 2) historical }\3’/ G> =
memOry 4[Attend Region]17 et

v" Action: 1) fixation location of the agent 2) w

probability of a future accident

v Reward: 1) earliness, 2) correctness, and 3)
attentiveness

DRL for Traffic Accident Anticipation

O Methodology Overview
 The traffic observation environment identifies representative features as observation state.
 The stochastic multi-task agent predicts both the accident score and the next fixation point.

« Improves the SAC for training the DRIVE model.

o P

> Foveal Vision o = IA
P a
[Saliency Model } [p = min(m,a) } v :
top-down attention vl > Lrec - , !
observation!state :] actions| rewlard
v . - Accident Pred. |01 - > 1 7 (4,a)!
pooling ri [(it 1 TANK
S=(1=p)Spy +pS - |- . !
(1= P)Spu + PSta]_'(A) D[o m {Fixation Pred. | <@}~ -»i (P,)i
i - z, ™ Ll t--q--=!
' 'S; RAE t '
. ot : I -
video bottom-up attentlonT i Stochastic Multi-task Agent rep|ay buffe@
:{ Saliency Model } T - ettt ittt :
Traffic Observation Environment feature volume ---» used in training [__]policy networks

Fig: The proposed DRIVE model

DRL for Traffic Accident Anticipation

O Traffic Observation Environment

« Traffic visual attention modeling by CNNs

o Foveation is implemented by the multi-level low-pass pyramid method!'!.

o MLNet@ with VGG-16 backbone.
o MLNet is trained on DADA-2000 dataset.

1 2 3 4

: e |
1 /%I [= l—__l 1

- 1
i Low-Pass — | |
:Pyramid !
' i
1 1
I 1
I 1
1 1
] 1
! |
i y v \ v
I Foveated] @ !
1
! Pyramid Regions '

Foveation by multi-level low-pass pyramid('l

Input image

__

Saliency prediction by MLNet!!

[1] Wilson S Geisler and Jeffrey S Perry. Real-time foveated multiresolution system for low-bandwidth video communication. In Human Vision and Electronic Imaging I,

volume 3299, pages 294-305, 1998.
[2] Cornia, Marcella, et al. "A deep multi-level network for saliency prediction." in ICPR, 2016.

DRL for Traffic Accident Anticipation

O Traffic Observation Environment

« State representation

=

)

Shared
Saliency
Model

Raw Frame

~—

IS

A 4

‘ p = min(m, @) ’

Top-down Attention

observation state

\ 4
pooling
S = (1— p)Spu + PSta }—»g-_) ﬂ

Bottom-up Attention

o Dynamic Attention Fusion (DAF)
St = (1-p")Sh, + p' Sty

o Feature pooling and concatenation

[
>

feature volume

sp = ca (f amp(S' OVY), faap(S'® Vf)) f

DRL for Traffic Accident Anticipation

O Stochastic Multi-task Agent

Multi-task Agent Architecture
e Regularized AutoEncoder (RAE)

e Two stochastic policy networks

Action representation

a; = cat (¢4 (E(st)) . or (E(

st))) -

_____ > Ligc 4777
! : ¢ actions reward
[ﬂ = [Accident Pred]@'»O{ »>!7,(a,a)
- ! 1 !
A [Fixation Pred. ﬁ'—r’l -->E_7‘15(_Z3_,P25
s RAE |° i} o
_____ t
replay buﬁ;@

__

...

O(t) U

DNNs

state - i

a=tanh(u+€-0)
e~N(0,1)

DRL for Traffic Accident Anticipation

O Reward Functions and Training

 Dense Anticipation Reward

) w
'rf,\ = w; - XNOR [H[at > ao), y}) 1
1 ,
wy = <Cma.\(0.tﬂ—t) . 1) .

eta — 1
0| ta

(o I 4

« Sparse Fixation Reward.

R -1 1 v H]jt_ptHZ
re=1[t > t,]exp | — .
n

« The model is trained by our improved SAC algorithm.

— H(ms(a]s)) = log [y, (als) - 76, (B]s)]

DRL for Traffic Accident Anticipation

O Improved SAC Algorithm * Optimize the RAE by J(£)

JraE(B) = Lrec(s; B) + ‘lb‘0||ﬁ3||2 + ‘w5||z||2, (14)
* Optimize the Critic by J(0)

- -
J(0;) = E [(QOZ (s,a) —y(r,s’,a))]) (15) Algorithm 1 Improved SAC for the DRIVE Model Training
Require: 01, 02, ¢. 3 > Initial parameters
/ (- o N . A I: 0y < 01,05 <0 > Initialize target networks
y(r,s,a) =r+vy(l—d) | min Q5 (s'.a’) — alogmy(a’|s LA T2 g
'-/(o) + }() (j:l.? "293' (‘) o 9() 2D+ 0, hyg+0 > Replay buffer and hidden states
3: for each iteration do
o 4: for each environment step do
. Optimize the Actor by () 5: Sample actions (az, hy) ~ 74 (az|s:, hi_1)
6: Compute state s; with actions > See Eq. 2
J,(0) =E |alogmy(als) — min Qy. (s, a)| + wo|d||%, 7: Compute reward r, = Yy + 7% > See Eq. 4-6
O(') g/d)(|) j=1.2Q9] () Oll | v 8: D(—DU{(St,at.'l't.llt.st+1)}
. ' nt 9: end for
J(9a) = Jo(¢) + w,E [E(a‘ s la, y)] (1) 10: for each gradient step do
J(dp) = J, () + woE [I[t > t,1d(pt. p*)] . 11 for each critic update do
(97) = Jo(6) +woE [I[t > ta]d(p", p)] 12: 0 < 60— AVyJg(f) © Update by Eq. 15
13: end for
o 14: O ¢ — /\V@'Jﬂ((ji) > Update by Eq. 11
. Optimize the Temperature by j(a) 15: a + max(a — Ao VaJ(a), ag) > See Eq. 12
16: 0710+ (1—1)0 > Update Q-target
J(a) = E[-alog ’/T(;,(é|s) —aHo), (12) 17: B+ B — AVgJrae(S) > Update by Eq. 14
8: end for
o + max(a — A\ Vo J(a), ag) 19: end for

Ensure: 64,605, 0. 3

DRL for Traffic Accident Anticipation

0 Evaluation Metrics

Area under ROC (AUC)

Time-to-Accident (TTA)

True positive rate

=
o

'
//,
0.8 1 7
e Real Pos. Real Neg.
7
'
0.6 - //’
ot Pred. Pos. TP FP
7
0.4 + ,//’
'
e Pred. Neg. FN TN
0.2 . === Random chances
,/ —— ROC curve
7

0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

1
gosp
% 0.6
@ cT threshold=0.5
o L L e L
€ o0.4f
g P TTA >
£ 0.2]

0 I | L 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Frame Indices

DRL for Traffic Accident Anticipation

[0 Datasets
- DADA-2000"]

o Provides ~2,000 dashcam videos containing traffic accidents.

o Drivers’ eye fixation points are captured in lab by eye-tracking device.
o Spatial resolution: 660 x 1584

o 30 frames per second

o Videos are untrimmed, from which the negative video clips are sampled.

« DADI]
o Provides 620 positive (accident) and 1130 negative (normal) dashcam videos
o Videos are trimmed to 5 seconds long.
o Spatial resolution: 720 x 1080

[11J. Fang, D. Yan, J. Qiao, J. Xue, H. Wang and S. Li, "DADA-2000: Can Driving Accident be Predicted by Driver Attention? Analyzed by A Benchmark," 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), 2019, pp. 4303-4309.
[2] Fu-Hsiang Chan, Yu-Ting Chen, Yu Xiang, and Min Sun. Anticipating accidents in dashcam videos. In ACCV, 2016.

DRL for Traffic Accident Anticipation

O Comparison with SOTA baselines
. Our model achieves the best AUC score and competitive TTA performance.

. Our method is flexible to be extended without fixation annotations.

. Ablation studies show the contributions from bottom-up (BU) and top-down (TD) attentions, as well as the RAE.

DADA-2000 [1] DAD [7]
Methods . v ‘
AUC (%) TTA (s) | AUC (%) TTA (s)
DSA-RNN [] 47.19 3.095 71.57 1.169
AdaLEA [10] 55.05 3.890 58.06 2.228
UString [2] 60.19 3.849 65.96 0.915
DRIVE (ours) 72.27 3.657 93.82 2.781

DRL for Traffic Accident Anticipation

O Ablation Study

. We analyzed the contributions of each major component, including:

o Training algorithm (SL vs. RL).

o Vanilla SAC-based RL algorithm vs. SAC+RAE method.

o With vs. without human fixations as ground truth in training.

. AUC results and reward curves of training process

Type SAC RAE Fixations AUC (%)
RL v v X 61.91
RL v X v 66.21
SL X v v 63.96
RL v v v 72.27

Test Reward (x1000)
N IN

o

w
1

—
1

SAC + RAE
— w/o TD Att
— w/o BU Att
—— w/o RAE

o

10

20 30 40
Training Epoch

50

DRL for Traffic Accident Anticipation

O Visual Explanation Results

Correlation between Visual Attention and Accident Anticipation

Params Methods AUC SIM CC KLD ({)
0.5 SAF 0.645 0.188 0.322 2.679
DAF 0.659 0.192 0.331 2.654
0.8 SAF 0.691 0.144 0.190 3.087
DAF 0.726 0.158 0.226 2.986
L0 SAF 0.632 0.080 0.079 12.948
DAF 0.679 0.112 0.143 7.836
100
B DRIVE

Explainable Results by Attention Intervention

801

60 -

401

201

0..
Recall (%)

I DRIVE (w/o Attention)

DRIVE (inverse Attention)

f-AUC (%)

DRL for Traffic Accident Anticipation

0 Visualization

Ground Truth Bottom-Up Attention
SIM=0.38

Top-Down Attention DAF Attention

SIM=0.44 SIM=0.45

SIM=0.17 SIM=0.22 SIM=0.23

oY

SIM=0.25 SIM=0.24 SIM=0.25

-

Probability

DRL for Traffic Accident Anticipation

B Our Online Resources B Demo

Paper & Supp.: https://arxiv.org/abs/2107.10189 YouTube Demo: hitps://www.youtube.com/watch?v=A3bTWejzUwM

Code: https://github.com/Coqito2012/DRIVE
Project: https://www.rit.edu/actionlab/drive

Project Code

Feel free to contact me via wb6219@rit.edu

https://arxiv.org/abs/2107.10189
https://github.com/Cogito2012/DRIVE
https://www.rit.edu/actionlab/drive
https://www.youtube.com/watch?v=A3bTWejzUwM
mailto:wb6219@rit.edu

Q&A

