
A Brief Introduction to Deep Reinforcement Learning

Wentao Bao

April 14, 2022

Outline

p Foundations of DRL

p DRL Algorithm: DQN and SAC

p DRL Application: Traffic Accident Anticipation

Foundations of DRL

p What Can DRL Do?

AlphaGo for Go game
(DeepMind, 2016)

TStarBots for StarCraft2
(Tencent AI, 2018)

CARLA for self-driving
(Toyota TRI, on-going)

Solving the Rubik’s Cube
(OpenAI, 2019)

⋯

ReBel for Texas Hold’em
(Facebook AI, 2020)

Foundations of DRL

p What is Reinforcement Learning (RL)?
• The agent learns to take actions for a long-term goal by interacting with the environment.

• Basic Elements (System):

ü Agent: the model (e.g., an AI player in video games.)

ü Environment: the world to be explored (e.g., checkerboard)

ü Goal: e.g., win/fail

Foundations of DRL

p What is Reinforcement Learning (RL)?
• The agent learns to take actions for a long-term goal by interacting with the environment.

• Main Elements (System):

ü State: any useful information about the agent and environment, e.g.,

o Go game: maximumly 3!"# checkerboard states

o Self-driving: the car’s location/velocity/acceleration, etc., and the traffic scene.

ü Action: how the agent will do in each step, e.g.,

o Go game: take a location in a checkerboard

o Self-driving: brake/accelerate/make a turn for a self-driving car.

ü Reward: the instant feedback (scalar value) after taking the action , e.g.,

o Go game: long-term rewards [0, 0, …, 0, 1] (win the game).

o Self-driving: arrive at the destination.

• DRL Output
⋯𝑠! , 𝑎! , 𝑟! , 𝑠!"#⋯

Foundations of DRL

p What is Reinforcement Learning (RL)?
• The agent learns to take actions for a long-term goal by interacting with the environment.

• Core Elements (Algorithm):

ü Policy: a function 𝜋: ℝ! → ℝ" that tells how to take an action under a certain state,

o Formula: 𝒂 = 𝜋(𝒔; 𝜃)

o Instantiated by Deep Neural Networks in DRL.

ü Value: a function 𝑉: ℝ! → ℝ that evaluates the quality of an action (or action-state pair).,

o State Value Function: 𝑣 = 𝑉(𝒔; 𝜑), or

o State-Action Value Function: 𝑞 = 𝑄(𝒔, 𝒂; 𝜑)

o Instantiated by Deep Neural Networks in DRL.

ü Value function determines how a policy function is learned.

Foundations of DRL

p Atari Pong: a video game example
• Rule: hit the ball by moving the pad up or down.

• Basic Elements:

ü Agent: the AI player that controls the pad on the right.

ü Environment: the raw pixels at each time step.

ü Goal: get higher final score than the opponent.

• Main Elements:

ü Action: move UP / DOWN.

ü State: raw pixels, CNN features, location and speed of the pad, etc

ü Reward: scalar value, e.g., +1 (win), or -1 (lose)

Foundations of DRL

p Core Elements
• Policy Function

o Stochastic Policy: 𝜋 𝑎 𝑠 = 𝑃(𝐴# = 𝑎|𝑆# = 𝑠).

o Deterministic Policy: 𝜇 𝑎 𝑠 = argmax
$

𝜋 𝑎 𝑠

Foundations of DRL

p Core Elements
• Value Function

o Can be decomposed into the immediate reward plus discounted value of successive future states

o Bellman Equation of State Value:

o Bellman Equation of State-Action value (Q-function):

Foundations of DRL

p DRL Algorithms
• DRL Objective: Find a policy to maximize the total expected reward

• Based on what the DRL agent explicitly learns:

o Policy-based: policy (explicitly learned); no value function.

o Value-based: value (explicitly learned); policy (implicitly derived)

o Actor-Critic Method: learn both policy and value explicitly.

• Based on if the DRL agent learns an environment model.

o Model-based: the state transition is given/predicted.

o Model-free: state transition is sampled from experience
Credit to: David Silver

max
∅
)

!
𝔼(&!,(!)∼+"[𝑟(𝑠! , 𝑎!)]

Foundations of DRL

p Code Example
• With existing libraries, implementation is simple!

o OpenAI gym library

• A complete PyTorch example of DQN:

o https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

Online image

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

Foundations of DRL

p Recommended Resource
• Books

o Richard Sutton’s book (2d edition)

o Online version: http://incompleteideas.net/book/RLbook2020.pdf

• Online Courses
o Berkeley CS-285: http://rail.eecs.berkeley.edu/deeprlcourse

o Stanford CS-234: https://web.stanford.edu/class/cs234

• Open source RL libraries:
o Ray/RLlib (TF/PT, 20k): https://github.com/ray-project/ray/tree/master/rllib

o OpenAI Baselines (TF, 12.5k): https://github.com/openai/baselines

o PyTorch DRL (PT, 4.2k): https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch

o THU Tianshou (PT, 4.5k): https://github.com/thu-ml/tianshou

o RLpyt (PT, 2k): https://github.com/astooke/rlpyt

http://incompleteideas.net/book/RLbook2020.pdf
http://rail.eecs.berkeley.edu/deeprlcourse
https://web.stanford.edu/class/cs234
https://github.com/ray-project/ray/tree/master/rllib
https://github.com/openai/baselines
https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch
https://github.com/thu-ml/tianshou
https://github.com/astooke/rlpyt

DRL Algorithm: DQN

• The most impactful DRL algorithm till now (18.9K+ GS citations)
• The first work that combines RL and DNNs.

https://www.nature.com/articles/nature14236

DRL Algorithm: DQN

p Deep Q-learning
• Given a state, the optimal policy 𝜋∗(𝒔) can be determined by maximizing the optimal Q-value.

• To learn the 𝑄∗(𝑠, 𝑎), value function approximation is introduced by using DNNs

• Using the Bellman equation, such an approximation is achieved by minimizing the temporal
difference (TD) error

• Eventually, Q-learning aims to minimize the average TD error by SGD optimizer

Bellman Equation

TD Error

DRL Algorithm: DQN

p Pros and Cons of Q-learning
• Q-target:

• Pros: Off-policy
ü The policy to update Q-function (evaluation policy) is different to the policy used to produce action samples

(behavior policy)

• Cons:
ü The target Q is the same as the the Q to be optimized!

e.g., a cat is chasing a string tied to itself surrounding a table.

ü Imagine that your labels are always changing in supervised training.

Behavior policy: 𝜀-greedy (𝜀 probability to select 𝑎#%&)
Evaluation policy: greedy (by max 𝑄(𝑆#%&, 𝑎'))

DRL Algorithm: DQN

q How does DQN improve the Q-learning?
• Target Q Network: parameters are updated delayed.

ü The “mouse” is kept fixed for a period of time, so that the “cat” could catch up.

• Experience Replay: stabilize the training by reducing the sample correlation

ü Store the transition (𝑠! , 𝑎! , 𝑟! , 𝑠!"#) in a large replay buffer, from which
samples are randomly drawn to update the neural networks.

Update the Target Q Network weights by running average

DRL Algorithm: DQN

q Summary of the DQN
• Q-Network Architecture:

• Loss Function

Atari Game Screen

Q-values
(for each action)

• Training Algorithm

𝜀-greedy behavior policy

experience
replay

delayed Q-target update

DRL Algorithm: DQN

q Atari Demos[1]

Breakout Kangaroo Journey Escape

[1] Demos from: https://github.com/nik-sm/dqn

DRL Algorithm: SAC

q Exploration and Exploitation Dilemma
• A simple example: Decide a restaurant to eat

ü “Suppose there are 10 restaurants around you, and you have ever
tried 8 of them, knowing that the best of the 8 is scored 80, while the
rest 2 may be scored 20 or 100.”

ü “Will you choose the best restaurant (80) that you tried?”

ü “Or will you explore a new restaurant from the two?”

• Fundamental concepts that guide the design of most modern
DRL algorithms.

• How to Explore the Action Space?

ü Q-learning / DQN: 𝜀-greedy method

ü Maximum Entropy RL: maximize the entropy of action
distribution, e.g., SAC.

DRL Algorithm: SAC

q Soft Actor-Critic (SAC)[1]

• Training Goal: maximize the total expected reward and the entropy of actions.

• Different to DQN that only learns the value, SAC learns both value and policy.

• Core Elements:

ü Soft Policy Network (Actor): produce action by giving a state (𝜋()

ü Soft Value Network (Critic): state value (𝑉)), and state-action value (𝑄*)

• Central Idea of Actor-Critic:

• A policy gradient method: directly optimize policy by gradient descent.

• Actor: decide which action should be taken.

• Critic: inform the actor how “good” was the action, and how it should adjust.

[1] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

DRL Algorithm: SAC

q Network Architectures
• Policy Network: 𝒂 = 𝜋(𝒔; 𝜃)

• State Value Network: 𝑣 = 𝑉(𝒔; 𝜓)

• Q Networks: 𝑞 = 𝑄(𝒔, 𝒂;𝑤)

DRL Algorithm: SAC

q Loss Functions
• Policy Network: 𝒂 = 𝜋(𝒔; 𝜃), updated by minimizing the KL divergence between action

distributions and energy distribution of Q values.

• State Value Network: 𝑣 = 𝑉(𝒔; 𝜓), updated by using Q value and entropy as the target

• Q Network: 𝑞 = 𝑄(𝒔, 𝒂;𝑤), updated by minimizing the TD error

DRL Algorithm: SAC

q Some online resources
• Sample code of SAC: https://github.com/pranz24/pytorch-soft-actor-critic/blob/master/sac.py

• SAC is known as SOTA for Robot Learning[1]

[1] Demos are from BAIR’s ICLR 2021 work: https://bair.berkeley.edu/blog/2021/02/25/ss-adaptation

https://github.com/pranz24/pytorch-soft-actor-critic/blob/master/sac.py
https://bair.berkeley.edu/blog/2021/02/25/ss-adaptation

DRL for Traffic Accident Anticipation[1]

p Traffic Accident Anticipation
• Anticipate the traffic accidents before they happen as early as possible (AEAP).

• Given a dashcam video, we need to know if and when an accident will happen.

Accident Video (positive) Non-accident Video (negative)

[1] Wentao Bao, Qi Yu, and Yu Kong. "Deep Reinforced Accident Anticipation with Visual Explanation.” in ICCV, 2021.

p Challenges
• Visual cues of future accidents are difficult to be captured

o Explicitly model the human visual attention

• Trade-off between early and accurate decisions

o Formulate the task as a Reinforcement Learning problem

Where do drivers look when predicting future accidents?

early, not accurate too late, accurate

an accident occurs𝑡 = 𝑡- 𝑡 = 𝑡.

Illustration for drivers’ visual attention

DRL for Traffic Accident Anticipation

p Preliminary: Human Visual Attention
• Biological Vision System

o Foveal vision: recognizing object semantics.
o Peripheral vision and working memory: drives visual exploration.

• Human visual attention is computationally simulated by saliency map.

• With eye-tracking data, saliency map could be predicted by DNN.

Fovea on Retina
(Wikipedia)

DRL for Traffic Accident Anticipation

p DRL Setup
• Basic Elements:

ü Agent: deep neural networks (DNN).

ü Environment: dashcam traffic videos.

ü Goal: predict accident AEAP, visually
explainable

• Main Elements:
ü State: 1) attended local region 2) historical

memory

ü Action: 1) fixation location of the agent 2)
probability of a future accident

ü Reward: 1) earliness, 2) correctness, and 3)
attentiveness

DRL for Traffic Accident Anticipation

p Methodology Overview
• The traffic observation environment identifies representative features as observation state.

• The stochastic multi-task agent predicts both the accident score and the next fixation point.

• Improves the SAC for training the DRIVE model.

DRL for Traffic Accident Anticipation

Fig: The proposed DRIVE model

p Traffic Observation Environment
• Traffic visual attention modeling by CNNs

o Foveation is implemented by the multi-level low-pass pyramid method[1].
o MLNet[2] with VGG-16 backbone.
o MLNet is trained on DADA-2000 dataset.

[1] Wilson S Geisler and Jeffrey S Perry. Real-time foveated multiresolution system for low-bandwidth video communication. In Human Vision and Electronic Imaging III,
volume 3299, pages 294–305, 1998.
[2] Cornia, Marcella, et al. "A deep multi-level network for saliency prediction." in ICPR, 2016.

Foveation by multi-level low-pass pyramid[1] Saliency prediction by MLNet[1]

DRL for Traffic Accident Anticipation

p Traffic Observation Environment
• State representation

o Dynamic Attention Fusion (DAF)

o Feature pooling and concatenation

𝑆 = (1 − 𝜌)𝑆!" + 𝜌𝑆#$
pooling⊙

observation state

𝜌 = min(𝑚, 8𝑎)

Shared
Saliency
Model

feature volume

8𝑎8𝑝

Foveal Frame

Raw Frame

Top-down Attention

Bottom-up Attention

DRL for Traffic Accident Anticipation

p Stochastic Multi-task Agent
• Multi-task Agent Architecture

o Regularized AutoEncoder (RAE)

o Two stochastic policy networks

• Action representation

8𝑎

𝑟%(8𝑝, 𝑝)

𝑟&(8𝑎, 𝑎)

Fixation Pred.

ℒ$%&

8𝑝

Accident Pred.

𝒛#𝒔# a#
replay buffer

rewardactions

policy networksused in training

𝐷
RAE

𝑜(()

state

D
N

N
s

𝜇

𝜎
a = tanh(𝝁 + 𝝐 = 𝝈)

𝝐~𝑁(0,1)

DRL for Traffic Accident Anticipation

p Reward Functions and Training
• Dense Anticipation Reward

• Sparse Fixation Reward.

• The model is trained by our improved SAC algorithm.

𝑤

𝑡(𝑡

1

0

DRL for Traffic Accident Anticipation

p Improved SAC Algorithm
• Optimize the Critic by 𝐽(𝜃)

• Optimize the Actor by 𝐽(∅)

• Optimize the Temperature by 𝐽(𝛼)

• Optimize the RAE by 𝐽(𝛽)

DRL for Traffic Accident Anticipation

p Evaluation Metrics
• Area under ROC (AUC)

• Time-to-Accident (TTA)

TTA

Real Pos. Real Neg.

Pred. Pos. TP FP

Pred. Neg. FN TN

DRL for Traffic Accident Anticipation

p Datasets
• DADA-2000[1]

o Provides ~2,000 dashcam videos containing traffic accidents.

o Drivers’ eye fixation points are captured in lab by eye-tracking device.

o Spatial resolution: 660 x 1584

o 30 frames per second

o Videos are untrimmed, from which the negative video clips are sampled.

• DAD[2]

o Provides 620 positive (accident) and 1130 negative (normal) dashcam videos

o Videos are trimmed to 5 seconds long.

o Spatial resolution: 720 x 1080

[1] J. Fang, D. Yan, J. Qiao, J. Xue, H. Wang and S. Li, "DADA-2000: Can Driving Accident be Predicted by Driver Attention? Analyzed by A Benchmark," 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), 2019, pp. 4303-4309.
[2] Fu-Hsiang Chan, Yu-Ting Chen, Yu Xiang, and Min Sun. Anticipating accidents in dashcam videos. In ACCV, 2016.

DRL for Traffic Accident Anticipation

p Comparison with SOTA baselines
• Our model achieves the best AUC score and competitive TTA performance.

• Our method is flexible to be extended without fixation annotations.

• Ablation studies show the contributions from bottom-up (BU) and top-down (TD) attentions, as well as the RAE.

DRL for Traffic Accident Anticipation

p Ablation Study
• We analyzed the contributions of each major component, including:

o Training algorithm (SL vs. RL).

o Vanilla SAC-based RL algorithm vs. SAC+RAE method.

o With vs. without human fixations as ground truth in training.

• AUC results and reward curves of training process

DRL for Traffic Accident Anticipation

p Visual Explanation Results
• Correlation between Visual Attention and Accident Anticipation

• Explainable Results by Attention Intervention

DRL for Traffic Accident Anticipation

p Visualization

DRL for Traffic Accident Anticipation

DRL for Traffic Accident Anticipation
n Our Online Resources
Paper & Supp.: https://arxiv.org/abs/2107.10189
Code: https://github.com/Cogito2012/DRIVE
Project: https://www.rit.edu/actionlab/drive

YouTube Demo: https://www.youtube.com/watch?v=A3bTWejzUwM

Feel free to contact me via wb6219@rit.edu

n Demo

CodeProject

https://arxiv.org/abs/2107.10189
https://github.com/Cogito2012/DRIVE
https://www.rit.edu/actionlab/drive
https://www.youtube.com/watch?v=A3bTWejzUwM
mailto:wb6219@rit.edu

Q & A

